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Abstract-The paper describes a numerical algorithm for the solution of the steady-state Navier-Stokes 
equations in three dimensions for the problem of natural convection in a rectangular cavity as a result of 
differential side heating. Numerical results for two- and three-dimensional models are reported for a cavity 
filled with a low-Prandtl-number fluid. Supporting experiments using gallium as a working fluid are described. 
Measured temperatures are compared with predictions of the three-dimensional model. Agreement between 

data and predictions is only fair and reasons for the discrepancy are identified. 

1. INTRODUCTION 

THERE has been considerable recent interest in 
thermally driven flows in rectangular cavities in which 
the heating is imposed differentially on the two end 
walls [l-3]. For any small, non-zero temperature 
contrast there will be generally unicellular motion up the 
hot wall, across the top ofthe cavity, down the cold wall, 
and returning across the bottom. The applications 
range from geophysical processes to single-crystal 
growth from melts. The state of the art has been recently 
reviewed, important critical issues discussed and future 
research needs identified [4]. This paper is concerned 
with three-dimensional natural convection in a liquid 
metal filled cavity. There are two questions need- 
ing attention : three-dimensional vs two-dimensional 
effects in finite-size enclosures and the need of ex- 
perimental data for liquid metals. Natural convec- 
tion in rectangular cavities filled with a low-Prandtl- 
number liquid in which heating or cooling is imposed 
differentially on the two end walls is of practical interest 
to a number of important applications such as 
solidification of castings, purification of materials, 
growth of single crystals from melts, and many others. 

Extensive review of experimental work on natural 
convection in enclosures has failed to reveal significant 
dependence of the Nusselt number on the Prandtl 
number for a Prandtl number greater than 0.7 and a 
fixed Rayleigh number [S]. However, low-Prandtl- 
number fluids (liquid metals, semiconductors) are ex- 
pected to act differently to high-Prandtl-number fluids 
because fluid inertia plays a much more important role 
in the convective process. Some work has been done on 
predicting natural convection flow and heat transfer 
in three-dimensional enclosures filled with ordinary 
fluids [&lo]. For example, three-dimensional natural 
convection of ordinary fluids in horizontal, rectangular 
cavities of several different aspect ratios has been 
studied [7]. The conclusions of ref. [7] were that the 
overall heat transfer is determined by the entire three- 
dimensional flow field and further that the correct flow 

configurations within a box cannot be obtained two- 
dimensionally. Similar conclusions have been drawn 
by other investigators for the even more complicated 
configuration of a box heated differentially and inclined 
at an angle with respect to thegravitationalfield [6, lo]. 

It is has been pointed out that there are few 
predictions and even fewer experiments were natural 
convection in enclosures has been studied [4]. In 
addition, the question of two-dimensional vs three- 
dimensional modeling of natural convection in 
enclosures has not been adequately addressed, and the 
conditions for which two-dimensional models are valid 
have not been established. The lack of results for low- 
Prandtl-number fluids has provided the motivation for 
the work reported in this paper. Two-dimensional and 
three-dimensional natural convection in a cavity filled 
with a low Pr fluid has been modeled numerically, and 
experiments have been performed to measure the 
temperature distribution of a liquid metal in the 
enclosure. 

2. ANALYSIS 

2.1. Physical ana’ mathematical model 
We consider the steady, three-dimensional flow of a 

Boussinesq liquid in the geometry shown in Fig. 1. 
The enclosure is of a rectangular cross-section, with 
isothermal hot and cold vertical end walls. The top, 
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Cold 

Side 

Hot Wall IT,) 

wall 

Wall 

(TJ 

(Insulated) 
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FIG. 1. Schematic diagram of the enclosure and coordinate 
system. 
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NOMENCLATURE 

AX aspect ratio of enclosure, L/H, see Fig. 1 

AZ aspect ratio of enclosure, W/H, 
see Fig. 1 

H height of enclosure, see Fig. 1 
L length of enclosure, see Fig. 1 
Nu(y,z) local Nusselt number at hot wall, 

-aeiat;l,=, 

V velocity vector, ui + uj + wk 
V fluid velocity in the y-direction 
W dimensionless velocity in the z-direction, 

w/U, or width of enclosure 
W fluid velocity in the z-direction 
x, y, z coordinates, See Fig. 1. 

a(z) local Nusselt number (averaged over y- 
direction) at hot wall 

fi average Nusselt number at hot wall Greek symbols 
P pressure 

; 

thermal diffusivity 
P* dimensionless pressure, PHJpUg thermal expansion coefficient 
PI- Prandtl number, v/u dimensionless y-coordinate, y/H 
Ra Rayleigh number, gj(Tn-- Tc)H3/av Y- diffusion coefficient 

S, source term V kinematic viscosity 
T temperature P density 
u dimensionless velocity in the x-direction, dimensionless x-coordinate, x/H 

u/U, r5 dimensionless z-coordinate, z/H 

UO reference velocity, u/H e dimensionless temperature, 
u fluid velocity in the x-direction (T- T,)/(T, - T,) 
V dimensionless fluid velocity in the y- dJ dependent variable. 

direction, v/U, 

bottom and the two side walls are insulated. The flow is 
assumed to be laminar and three-dimensional. The 
fluid within is assumed to have constant properties 
except insofar as the buoyancy is concerned, i.e. the 
Boussinesq approximation of linear temperature 
dependence of density is utilized. The governing 
conservation equations of mass, momentum and 
energy are non-dimensionalized using scales A?; a/H 
and H, for temperature, velocity, and length, 
respectively. The normalized equations then become 

v*v=o (1) 

V - VV = PrV’V -VP* + PrRaej (2) 

v-(Vtl) = v%. (3) 

Referring to Fig. 1, the boundary conditions become 

e(0, U, i) = 1 (4a) 

W,, ?, 5) = 0 (4b) 

e,(& 0, i) = e,(& 1, 0 = 0 (4c) 

@&, rt, 0) = edi;, tl, A,) = 0 (4d) 

with velocity V equal to zero on all the boundaries. 
Thus, we are considering rigid impermeable walls, 
conducting on the ends and insulated on the top, 
bottom and the sides. 

Inspection of equations (l)-(3) reveals that they can 
be written in the form 

v * (Vqh) = I-,v24 + s, (5) 

where the function 4 stands for the dependent variable, 
and rd and S, are the diffusion coefficient and the 

source term corresponding to 4, respectively. The 
definitions of the variables and coefficients are 
summarized in Table 1. 

2.2. Method of solution 
There are numerous techniques for solving the 

conservation equations of mass, momentum and 
energy. Some of these techniques have been assessed 
elsewhere [11] and the SIMPLER algorithm of 
Patankar [12,13] was found to be superior with respect 
to the rate of convergence and stability; therefore, the 
algorithm is used in this work. The derivation of the 
discretized equations for the dimensional geometry is 
tedious and is not given here but it follows the approach 
for the two-dimensional case which is described 
elsewhere [12, 131. The solution seqeuence employed 
is the same as suggested for the two-dimensional 
geometry. 

The tridiagonal matrix inversion algorithm (Thomas 
algorithm) was employed for the solution of the 
algebraic finite-difference equations. The convergence 
criterion was based on the local mass imbalance within 
the cavity. If the maximum local mass imbalance was 

Table 1. Definitions of $, I-+ and S, 

Equation 4 rrn s4 

Continuity 1 0 
x-momentum u Pr -c&g 
y-momentum V Pr -(~P*/&J) + Pr Ra 0 
z-momentum W Pr - apflac 
Energy e 1 0 
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less than 0.01% of the total mass present within the 
cavity, the equations were assumed to be converged. 

Numerical solutions were obtained by taking 
advantage of the s~etry plane at z/H = R’/2. To 
establish the effect of grid on the results different grids 
ranging from 11x11~6 to 31x31~16 were con- 
sidered for a cubical cavity. The majority of the 
solutions reported in the paper were obtained with a 25 
x 25 x 11 mesh, which was considered to represent a 
reasonable compromise between accuracy and com- 
puting cost. 

The mesh size limitations are felt in terms of the 
maximum resolution that can be achieved by a finite- 
difference method of solution. Velocity distributions 
for a cubical cavity (Ra = lo6 and Pr = 0.02) were not 
too sensitive to the different grids (15 x 15 x 11,21 x 21 
x 11 and 25 x 25 x 11); however, the peak of the 

maximum velocity was shifted towards the wall as the 
number of mesh points was increased. The finite- 
difference mesh used to generate both two- and three- 
dimensional solutions is given with the results. The 
accuracy of the solutions is, of course, of considerable 
importance. Unfortunately, because of their demands 
on computer storage and time, it was not practical to 
explore the effects on the truncation errors of further 
mesh refinement in the three-dimensional solutions, 

3. EXPERtMENTS 

3.1. Apparatus and instrumentation 
Steady-state natural convection experiments were 

performed in a rectangular test cell (Fig. 2) whose inside 
dimensions could be adjusted such that two different 

FIG. 2. Schematic diagram ofthe test cell, top view (a) and front 
view(b) : (1) heat source and/or sink ; (2) Plaxiglass wall ; (3) air 
gap; (4) phase change material; (5) thermocouple rack; (6) 
thermocouples along the walls; (7) small diameter 
thermocouples; (8) hole for filling PCM; and (9) constant 

temperature baths. 

aspect ratio cavities (A, = 1.0 and A, = 2.0) could be 
obtained. The inside dimensions of one of the test cells 
were 6.35 cm in length, 3.81 cm in width and 6.35 cm in 
height, and of the second they were 8.88 cm in length, 
3.81 cm in width and 4.44 cm in height. The two end 
walls, which served as the heat source/sink, were made 
of a multipass heat exchanger machined from a copper 
plate. The copper surfaces were plated with a 0.0127- 
mm-thick chromium for protection against corrosion. 
The top, bottom and siewalls were made of Plexiglass. 
The two vertical sidewalls were 1.27-cm-thick plates to 
support the cell ; and, for better insulation, the front and 
back sidewalls had a 0.318 cm air gap between doule 
plates. One of the plates is 0.318 cm thick and the other 
is 0.635 cm thick. The entire test cell was insulated with 
Styrofoam and was further wrapped with a fiber glass 
blanket. 

The horizontal temperature distributions in the 
central region along the top wall, the center line and the 
bottom wall of the test cell were measured with copper- 
~onstantan (type K) the~ocouples having wire 
diameter of 0.127 mm. A total of up to 26 (depending on 
A,) equally spaced thermocouples were installed on the 
top and the bottom walls. The precise locations of 
thermocouples along the top and the bottom walls were 
ensured by placing them in small holes which were 
drilled in the walls. The thermocouples were then 
inserted close to the surface of the walls and were then 
sealed. A total of up to 17 other the~ocouples, used to 
measure the temperature distribution along the center 
line, were made into a thermocouple rack. Each pair of 
thermocouple wires was sheathed in a 0.584-mm-diam. 
stainless steel tube and were then attached per- 
pendicularly to a 2.38-mm-diam. stainless steel tube. 
The sheathed thermocouples were arranged in a 
horizontal plane and in a direction perpendicular to the 
front and the back walls where the temperature 
gradient in the liquid was the smallest (Fig. 2). The 
arrangement minimized heat conduction along the 
small stainless steel tubes and therefore reduced 
the measurement error. 

The text cell was placed in a transparent box made of 
acrylic (Lexan) where the temperature could be 
regulated and kept constant by a temperature 
controller. The purpose of the controlled environment 
was to reduce the tem~rature difference between the 
test cell and environment, thus minimizing the heat 
loss/gain from the test cell to the ambient surroundings. 
A heat storage material was also placed in the box to 
minimize the frequent on-and-off-switching of the 
heater and to keep the inside temperature close to a 
constant value. 

3.2. Experimental procedure and data reduction 
Themetal used in theexperiments was gallium. It had 

a purity of 99.6% and a fusion temperature of 29.78”C. 
There were several reasons for selecting gallium. First, 
the thermophysical properties are reasonably well 
established [14]. Second, it has a fusion temperature 
close to the ambient, which is conducive for 
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ex~~mentation. Third, the metal is important 
technologically as it is usually combined with other 
pure elements to form electronic and industrial 
materials such as semiconductors, laser diodes, solar 
cells, and magnetic bubble devices. The main 
disadavatange is that is is very expensive (about U.S. 
$l/g,de~nding on purity), and this necessitated use ofa 
small test cell. 

Before each experiment the metal was melted and 
poured into the preheated test cell through the sprue 
on the left side (Fig. 2). Provision was made to avoid 
air bubble entrapment in the test cell. This was 
accomplished during the filling procedure by slightly 
lifting one of the side walls where a small hole had been 
drilled near the top plate. This hole was sealed after the 
test cell was filled. 

Since gallium is opaque the flow structure could not 
be directly observed; flow visualization experiments 
were performed with water. The Prandtl number of 
gallium is more than two orders of magnitude smaller 
than that ofwater ; therefore, the flow patterns were not 
expected to be the same for the two fluids even though 
the Rayleigh numbers were identical. At best, only some 
qualitative understanding could be hoped for. A small 
amount offishscaleparticles wasusedasaflow tracer in 
order to observe fluid motion. A plane sheet of laser 
radiation, produced by passing the beam through a 
cylindrical lens, was used to irradiate the fluid at 
different planes in the text cell. A very thin ( <2 mm) 
velocity boundary layer was observed near the heat 
source and the heat sink where the velocity was 
relatively high. Along the horizontal top and bottom 
walls of the cell the horizontal fluid motion was very 
weak. In the core the fluid was practically stagnant. The 
observations are similar to the findings of others for 
silicone oil [IS]. 

4. RESULTS AND DISCUSSION 

4.1. Flow structure 
The effects of Rayleigh and Prandtl numbers as well 

as cavity geometry on the flow structure for ordinary 

fluids has been discussed in the literature [7] ; therefore, 
only one representative solution is presented for a 
cubical cavity with Ra = IO6 and Pr = 0.02. As a 
reference, results for natural convection of ordinary 
fluids in two-dimensional square cavities have also 
been reported [7, 161. Quantitative presentation and 
display of three-dimensions flow field results is 
difIicult; therefore, the results for different velocity 
components are given in terms of velocities at different 
planes. 

The horizontal (U) and vertical (V) velocity 
components in the x-y-plane are given in Figs. 3 and 4, 
resistively. The dimensionless velocity scale is 
indicated directly on each panel of the figures. For 
example, in Figs. 3(a) and 3(b) the U-velocity 
distributions are given at five different locations at 
x/H = 0.125, 0.300, 0.475, 0.650 and 0.875. A similar 
type of presentation of results is given for other planes. 

As expected, at the bottom of the cavity the axial flow 
is directed towards the hot wall at x/H = 0 and at the 
top of the cavity the axial flow is directed towards the 
cold wall at x/H = 1.0 [Figs. 3(a) and 3(b)]. In contrast 
to ordinary fluids [7,16], the boundary layers at the top 
and bottom walls are quite thick and extend to about 
the center of the cavity. Comparison ofpanels (a) and(b) 
of Fig. 3 reveals the axial velocities in the plane x-y 
through z/H = l/4 are smaller than those through the 
plane at z/H = l/2. The flow in the axial (x-direction) is 
stronger than the vertical (y-direction) and is not 
confined to the boundary layers (compare Figs. 3 and 4), 
and the boundary layers along the hot and cold end 
walls are seen to be thinner than along the horizontal 
walls. Figure 4 suggests that there are two weak 
counter-rotating cells in the cavity. This is more clearly 
shown in Fig. S(a) where the magnitude of the velocity 
vector in the axial-vertical (x-y-plane through 
z/H = l/2) has been plotted. The arrows denote 
the direction and magnitude of the resolved U and V 
velocity components at each grid point. The results 
show clearly the three-dimensional and recirculating 
nature of flow in the cavity. The velocity vectors of Fig. 
S(b)indicate that closer to the vertical sidewall (the x--y- 

0 1.0 0 

x/H 

FIG. 3. Horizontal U-velocity (in the x-direction) distributions in the x-y-plane through z/H = l/2 (a) and 
through z/H = l/4 (b): Ra = 106, Pr = 0.02, A, = AZ = 1.0. 
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x/H 

FIG. 4. Vertical V-velocity (in the y-direction) distributions in the x-y plane through z/H = l/2 (a) and through 
z/H = l/4 (b): Ra = 106, Pr = 0.02, A, = A, = 1.0. 
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0 1.0 0 1.0 

x/H X/H 
FIG. 5. Velocity vectors in the x-y-plane through z/H = l/2 (a) and through z/H = l/4 (b): Ra = 106, 

Pr = 0.02, A, = A, = 1.0. 

plane through z/H = l/4) the central core of fluid is 
practically stagnant. 

Figures 6 and 7 depict the horizontal (x-component) 
and vertical (y-component) velocities in the x-z-plane, 
respectively. The results ofFig. 6 show that complicated 
multiple longitudinal flows can develop. This finding is 
consistent with the results of Mallinson and de Vahl 
Davis [7] who have concluded that such flows are a 
delicate function of Ra, Pr and the cavity aspect ratio. 
The consequences ofthe longitudinal flows on the local 
heat transfer are discussed later. Comparison of Figs. 6 
and 7 shows that the maximum magnitude of the 
vertical velocity component is about twice as large as 
that of the horizontal velocity component. 

4.3. Temperature structure 
Figures 8(a) and (b) illustrate the contours of the 

isotherms at the midplane (z/H = l/2) and at the 
quarter plane (z/H = l/4), respectively. The dimension- 
less isotherms are given for a temperature difference of 

FIG. 6. Horizontal U-velocity distributions in the x-z-plane 
through y/H = l/2 (a) and through plane at y/H = l/4 (b): 

Ra = 106, Pr = 0.02, A, = A, = 1.0. 
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025 

Z/H 

Fm. 7. Vertical v-velocity distributions in the x-z-plane through y/H = l/2 (a) and through plane at 
y/H = l/4 (b): Ra = 106, Pr = 0.02, A, = A, = 1.0. 

A0 = 0.1. Vertical thermal boundary layers are clearly 
formed along the vertical walls. The isotherms are 
denser on the lower part ofthe hot vertical wall and on the 
top part of the cold vertical wall. This indicates that 
heat transfer through these parts of the walls is greater. 
The isotherms of the quarter-plane [Fig. 8(b)] are seen 
to be less dense than those ofthe midplane [Fig. 8(a)] at 
the lower part of the hot vertical wall, and this shows 
that the local heat transfer rate is larger at the midplane 
(z/H = l/2) than the quarter-plane (z/H = l/4). 

The horizontal motions near the bottom and top 
horizontal walls carry fluid particles from one end-wall 
to the other and complete the circuit flow. This process 
nrnrl~~r~a trvn &%rta whir-h src= c=viAent frnm Fin 2 y” “Y..““.. . IV v “.I”V.U ..ll.“ll WI” “.l..“llC II”lll I ‘b’ “. 

First, strong horizontal temperature gradients are 
maintained at the lower left and the upper right hand 
corners of the cavity. Second, a temperature difference 
is set up vertically across the interior of the cavity. 
Horizontal advection in the interior due to strong 
entrainment of fluid in and out of the boundary layers 
tends to make the temperature relatively uniform in the 
horizontal direction. Results for other Rn and Pr lnot - ______ -__. ____ -__- _-_ - _____ ___. ___- _ \____ 
included) which were considered in this study have 

shown that for a given Ra the effects of Pr on the 
temperature distribution manifest primarily in the 
interior of the cavity where the effects of vertical heat 
diffusion is important since the temperature field in the 
interior of the cavity is primarily a function of z only 
(Fig. 8). 

Panels (a) and (b) of Fig. 8 show that in the central 
part of the cavity 30/a< is small but positive in the center 
of the cross-section. This is a result of the convective 
effect of the flow in the secondary rolls (Fig. 5). The 
finding is consistent with the results for ordinary fluids 
for sufficiently large Ra [7, 16-J. 

For Pr >> 1 the nonlinear (convection) terms in the 
mrrmrntllm enlxotinna enlxatir\n (71 can ha aafe1x.r III”III”I..UIII W’\I..caL’“““, WyYU’a”” (A,, lull V” UC&&.‘, 

dropped, but when Pr << 1, the effect of the convection 
term is much more interesting. The effects of low 
Prandtl number manifest themselves in the interior of 
the cavity where, as pointed out above, vertical 
diffusion of heat is important. The vertical diffusion 
process for low-Prandtl-number fluids has not 
diminished because there is vertical advection in the 
interior to nnnnse it. The nrncenn becomes r&&v&~ -l-l---- r------ 

more important as Pr decreases. Consequently, the 

FIG. 8. Isotherms in the x-y-plane at z/H = l/2 (a) and z/H = 1/4(b): Ra = 106, Pr = 0.02, A, = A, = 1.0. 
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0.6 
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n 
"0 0.2 0.4 0.6 0.6 1.0 

r/H 

FIG. 9. Local Nusselt number [Nu(y,r)] contours : Ra = 106, 
Pr = 0.02, A, = A, = 1.0. 

vertical temperature gradient is larger and is linear over 
a greater vertical extent of the cavity than the higher Pr 
fluids [7]. 

4.4. The local and average Nusselt number. 
Figure 9 shows the local Nusselt number [Nu(y, z)] 

isopleths at the hot vertical wall of the cavity. The local 
Nusselt number was calculated at r = 0 using a three- 
point approximation for %)/a& The results clearly 
demonstrate the three-dimensional effects on local heat 
transfer at the hot wall. Heat transfer is maximum at 
lower part of the midplane (z/H = l/2). This is 
consistent with the U-velocity distributions given in 
Fig. 6. The two minima to the left and to the right of the 
midplane correspond to the locations where there is a 
reversal of the U-velocity away from the hot wall. 

Figure 10 shows the average Nusselt number along 
the z-axis. The average Nusselt number was calculated 
through the use of a three-point approximation of 
ae/a&, and Simpson’s rule to approximate 

s 

1 

ii%({) = Nu(tl,L')drl. (6) 
0 

The results are generated using three different grid 
sizes to assess the sensitivity of the results to the finite- 
difference mesh. The figure clearly shows that as the 
grid becomes finer, the variation of the y-direction 

4’ I 1 I 1 
0 0.2 0.4 0.6 0.6 1.0 

r/H 

FIG. 10. Effect of grid on the local Nusselt number fi(r) 
(averaged over the height of the cavity) distributions: 

Ra = 106, Pr = 0.02, A, = A, = 1.0. 

averaged Nusselt number [see equation (6)] across the 
spanwise z-direction becomes greater. 

The two-dimensional model equations were solved 
and the average Nusselt number results were compared 
to the three-dimensional model results in Table 2. The 
predictions of the two-dimensional analysis are about 
10% higher than those of the three-dimensional 
analysis. Even though the three-dimensional effects on 
the local Nusselt number are apparent, the average 
Nusselt number calculated from a two-dimensional 
analysis may be used to predict heat transfer in a three- 
dimensional cubical cavity for a low-Prandtl-number 
fluid. Results for the average Nussselt number have 
been calculated as a function of Rayleigh number and 
are presented in Table 3. 

The effect of the grid on the average Nusselt number 
is examined using two- and three-dimensional models 
and the results are reported in Table 2. The results of the 
table suggest that a grid finer than 25 x 25 x 11 (= 6875 
nodes) would have to be used to establish that the 
results are grid independent. To obtain a convergent 
solution with a 25 x 25 x 11 mesh required about 100 
iterations, and a run took 1642 s on a CYBER 205 
digital computer. Vectorization of the computer 
program would be expected to reduce this time 
significantly. However, a finer grid, say, 41 x 41 x 21 
would still be too costly for routine three-dimensional 

Table 2. Comparison of threedimensional and two-dimensional model results for the 
average Nusselt number: Ra = 106, Pr = 0.02, A, = A, = 1.0 

Grid Three-dimensional Two-dimensional % ditference 

15X15X11 7.408 8.105 +9.4”/, 
21X21X11 7.021 8.032 + 14.4% 
25x15~11 6.781 7.448 + 9.8% 
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Table 3. Effect of Rayleigh number on an average Nusselt Table 4. Average Nussselt number based on two-dimensional 
model: 41 x 41 grid, A, = 1.0 number based on a three-dimensional model : 25 x 25 x 11 

grid, Pr = 0.02, A, = A, = 1.0 

Ra lo4 lo5 lo6 
NU 1.674 3.136 6.781 

Pr lo4 

0.01 1.571 
0.02 1.765 
0.05 1.978 

Ra 
lo5 lo6 lo7 

2.975 6.121 13.327 
3.257 6.701 15.120 
3.657 7.160 16.936 

calculations, and a much more efficient algorithm 
would be needed. 

The effect of aspect ratio A, on the Nusselt number 
has been examined to determine the conditions for 
which the enclosure can be treated as two-dimensional. 
The results indicate that the spanwise variation offi 
increases with the decrease in the aspect ratio. An 
average Nusselt number (for a grid of 21 x 21 x 11) with 
aspect ratios of A, = 2.0 and A, = 1.0 is 7.904. This 
value is close to the value of 8.032 predicted by the two- 
dimensional model as indicated in Table 2. In this 
particular example, the two-dimensional model could 
be used to predict heat transfer with some confidence if 
aspect ratio A, is greater than 2. However, for A, = 0.5 
and A, = 1 .O an average Nussselt number was found to 
be 6.740. This, as expected, shows a greater effect of the 
vertical sidewalls on the circulation in the cavity. The 
two-dimensional model overpredicts the average 
Nusselt number by about 16%. In general, the results 
are consistent in trends with those reported in the 
literature for ordinary fluids [7], but the percent 
difference between average Nusselt numbers predicted 
by two-dimensional model and the three-dimensional 
model is greater for low Prandtl number fluids. 

The above correlation may overpredict heat transfer by 
about 10% compared to a three-dimensional model. 
The trends in the results are consistent with those 
reported for ordinary fluids [7] which have shown that 
the two-dimensional model also overpredicts the 
average Nusselt number ; however, for ordinary fluids 
the two-dimensional model overpredicted the three- 
dimensional model results only between 2.5 and 5%. 
Since the convergence of the three-dimensional model 
for a low Pr fluid is quite slow, its use is too costly for 
parametric studies. Results for the average Nusselt 
number using a two-dimensional analysis (41 x 41 grid) 
have been calculated as a function of Rayleigh and 
Prandtl numbers and are presented in Table 4. 

4.5. Comparison of predictions with data 

Past studies have shown that for natural convection 
flows with Pr 2 1 the role of inertia terms is a minor 
one. Hence, in theoretical studies Pr +co is a 
reasonably good approximation for most common 
fluids. The flows with Pr -co are non-linear solely 
through advection. The most interesting feature of the 
results obtained is that the average Nusselt number 
decreases with Prandtl number. This is consistent in 
trends with the results for ordinary fluids [7]. 
Inspection of equation (2) reveals that for fixed 
Rayleigh number and other parameters, a decrease of 
Pr is expected to increase axial flow, and would increase 
the heat transfer rate. However, the velocity 
distributions (Fig. 6) clearly show that there are 
multiple longitudinal flows, and that some of these 
flows are away from the hot end-wall. This explains the 
reason for the decrease in the average Nusselt number. 

Experiments and corresponding predictions of flow 
and heat transfer were made for two aspect ratio 
cavities with three different temperature differences 
imposed on the end walls of the cavity ; however, for the 
sake ofconciseness only two experiments for the largest 
Rayleigh numbers studied are discussed in detail. 

Figure 11 shows a comparison between the predicted 
and the measured steady-state temperatures in gallium. 
The symbols denote the data points and the lines the 
predictions. Although the agreement between the data 
and predictions is good, the analysis could not match 
accurately the data at the center of the test cell (y/H 
= l/2, z/H = l/2). The experimental data are suspect, 

0.8 

Average Nussselt numbers have been calculated 
using a two-dimensional model for A, = 1.0, and a 
least-squares fit ofthe numerical results are represented 
by an empirical equation 

ru = 0.16 Ra0.31 J’r”.14. (7) 

This equation is based on the following range of 
parameters: lo4 < Ra < 10’ and 0.01 < Pr < 0.05. 
Contrary to expectation, the correlation shows that the 
heat transfer rate would be decreased with the decrease 
in Prandtl number, but the dependence is quite weak. 

FIG. 11. Comparison of measured and predicted temperature 
distributions in gallium at z/H = l/2; Ra = 1.08 x 106, 

Pr = 0.0208, A, = 1.0, and A, = 0.6. 
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because at the center of the cavity (x/H = y/H = z/H 
= l/2) the dimensionless temperature is expected to be 
0.5. The discrepancy between the data and predictions 
could be due to the temperature measurement error, 
disturbance of flow and temperature field by the 
thermocouple rake and/or truncation error in the 
numerical model. Even though the temperature 
measurement error is estimated to be less than OYC, 
the results can be significantly affected since the 
temperature difference between the hot and cold walls is 
only 14.2”C. Part of the reason for the discrepancy 
between the measured and predicted temperatures at 
the top and bottom walls of the enclosure may be due to 
the fact that the thermocouples embedded in the walls 
did not measure the true temperature of the fluid but 
some average temperature of Plexiglass-sealant- 
gallium system around the junction. Some of the 
discrepancy between measured and predicted tempera- 
tures at the center of the test cell should be attributed to 
the disturbance of the flow and temperature fields by 
the thermocouples rate itself, particularly so, because 
the test cell was relatively small. In addition, since the 
temperature gradients near the end walls are quite steep 
the finite-difference grid used may have been too crude. 

Temperatures predicted at y/H = 0.5 for the 
conditions of Fig. 11 suggest relatively strong 
secondary rolls in the cavity to produce axial 
temperature gradient reversal at x/H = 0.2 and 
x/H z 0.8. The experimental data suggest much 
weaker circulation, but the axial temperature gradient 
ae/a( is positive in the central region of the cavity. 
Comparison of experimental data with predictions for 
the same cavity a.s for Fig. 11 but a smaller Rayleigh 
number (Ra = 2.74 x 105, TH- Tc = 3.6”C) revealed 
similar temperature trends and discrepancies. The 
main difference between the results was that there was 
practically no uniform temperature region in the center 
of the cavity at y/H = 0.5 as indicated in Fig. 11 for 0.4 
< x/H < 0.6. The predicted and measured tempera- 
tures in this region increased very gradually from a 
minimum located at about x/H = 0.35 to a maximum 
located at about x/H = 0.65. 

Figure 12 presents a comparison between the 
measured and predicted temperatures for a different 
aspect ratio enclosure and Rayleigh number. The 
agreement between the analysis and data is reasonable 
throughout the cavity; however, there is discrepancy 
between the data and predictions at the top and the 
bottom walls of the cavity. The numerical model 
predicts steeper temperature gradients than the 
data near the vertical end walls. This disagreement 
may in part be due to heat losses to the ambient en- 
vironment and the physical property variation with 
temperature since the temperature difference is larger 
(TH - T, = 34.6”C). 

Comparisons between predicted and measured 
temperatures have been made for the same cavity 
as in Fig. 12 having a smaller Rayleigh number 
(Rn = 2.35 x 105, T,- T, = 9.O”C, not shown here for 
the sake ofconciseness). The temperature discrepancies 
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FIG. 12. Comparison of measured and predicted temperature 
distributions in gallium at z/H = l/2: Ra = 9.02 x 105, 

Pr = 0.0208, A, = 2.0, and A, = 1.43. 

and trends were similar to those shown in Fig. 12. The 
predicted local temperature minimum at x/H = 0.4 
and maximum at x/H = 0.6 were not as strong as 
those shown in Fig. 12, and the temperature between 
these points increased rather gradually. In this 
region the predicted temperatures were about 5% 
smaller than the measured temperatures. This suggests 
that for Ra = 2.35 x 10s the secondary rolls in the 
center of the cavity are not as intense as for the higher 
Rayleigh number (Ra = 9.02 x 105). 

5. CONCLUSIONS 

The numerical solutions for flow and temperature 
fields have been obtained for three-dimensional natural 
convection as a result of differential end-wall heating. 
The results show that for low-Prandtl-number fluids 
three-dimensional effects develop not only near the 
walls but also in the center of the cavity. Multiple 
longitudinal flows were shown to develop which are 
functions of Ra, Pr and the cavity aspect ratios. The 
numerical results obtained should be considered 
preliminary. A much finer finite-difference mesh than 
was used is needed to predict the detailed flow structure 
with confidence for low-Prandtl-number fluids. For 
such a purpose, a much more effective algorithm and/or 
parallel processing would be required to make three- 
dimensional calculations practical. 

The study demonstrates three-dimensional effects on 
the convective heat transfer throughout the cavity. 
However, the average Nusselt numbers calculated from 
a two-dimensional analysis may be used as a first 
approximation to predict heat transfer in a three- 
dimensional cavity for low-Prandtl-number fluids and 
the specific aspect ratios studied. 

The experimental temperature data are only in fair 
agreement with the predictions. Significant studies 
remain to be done, such as more detailed measurement 
of the temperature distribution, local and average heat 
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transfer, and measurement of the velocity field within 
the enclosure filled with a liquid metal. 
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CONVECTION THERMIQUE NATURELLE TRIDIMENSIONNELLE DUN METAL 
LIQUIDE DANS UNE CAVITE 

R&sum&On d&it un algorithme numdrique pour la solution des equations permanentes de Navier-Stokes 
dans un probleme tridimensionnel de convection naturelle dans une cavite rectangulaire avec deux cotds 
chauffes dilferemment. Les resultats numtriques pour les modeles bi- et tridimensionnel sont foumis pour un 
fluide a faible nombre de Prandtl dans la cavitb. Des experiences utilisant le gallium comme fluide de travail 
sont dtcrites. Des temperatures mesurees sont comparees avec les previsions du modble tridimensionnel. 

L’accord entre les don&es et le calcul est seulement prometteur et les raisons de l&art sont identifiees. 

DREIDIMENSIONALE WARMEUBERTRAGUNG BE1 NATURLICHER KONVEKTION 
EINES FLUSSIGEN METALLS IN EINEM HOHLRAUM 

Zusammenfassung-Die Arbeit beschreibt einen numerischen Algorithmus zur Losung der dreidimen- 
sionalen stationaren Navier-Stokes-Gleichungen des Problems der natiirlichen Konvektion in einem 
rechteckigen Hohlraum bei unterschiedlicher Beheizungder Seitenwinde. Rechenergebnisse werden fur zwei- 
und dreidimensionale Modelle eines Raumes vorgestellt, der mit einer Fliissigkeit von kleiner Pr-Zahl gefiillt 
ist. Begleitende Versuche mit Gallium als Arbeitsfluid werden beschrieben. Die gemessenen Temperaturen 
wurden mit Vorausberechnungen des dreidimensionalen Modells verglichen. Die Ubereinstimmung 
zwischen Versuchsdaten und Vorausberechnungen ist nur befriedigend, Griinde fur die Abweichung werden 

angegeben. 
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IIPOCTPAHCTBEHHAJI ECTECTBEHHAJI KOHBEKUMR B XMjJKOM METAJIJ-IE B 
l-IOJIOCTM 

hlOTUUlR-OllHCbIBaeTCSi aJlrOpkiTM peUIeHEiR TpeXMepHblX CTaUHOHapHbIX YpaBHeHRii HaBbe-CTOKCa 

ITpH CCTeCTBeHHOk KOHBeKWH B npSIM0,‘rOJIbHOi-i ITOJIOCTH ITpH Harpc?Be c60~y. ~f,eACTaBJT.‘ZHbl ‘IBCJleH- 

HbIe ~3yJIbTaTbI AJIS AB)‘X-H TpeXMepHbIX MOAeJLeii KOHBeKIIHII B IIOJIOCTA, 3a~OAH~HHO~ nHAKOCTb,O 

npH MaJlblX %lCAaX &XSHATJUI. OIIWblBaIOTCK l+KCl-‘epHMeHTbI, B KOTOPbIX B KaYCCTBC pa6oqeii XKl(A- 
KOCTH ACIIOJlb3yeTCX I’aJlJlHi?. ‘k’i3MePeHHbIe TeMIIepaTypbI CpaBHBBaloTCK C PaCYeTaMA ItO TpeXMepHOir 

MOAeJIR. HalAeHo, ‘#TO COrnaCHe MCXAY 3KCnCPAMeHTaJIbHbIMH B PaC’IeTHbIMA AaHHbIMH RBJIlleTCR 

IIOCpeACTBeHHbIM, Ii aHWlH3HpylOTCSl IIPUYRHbI 3TOrO PaCXO~AeHWL 


